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Abstract: - In this paper, a variable mesh finite difference scheme using non polynomial spline is derived for 
the solution of singular perturbation problem with twin boundary layers.  The equation of discretization for the 
problem is obtained by using the condition of continuity for the first order derivatives of the variable mesh non 
polynomial spline at the interior nodes. The discrete invariant imbedding algorithm is used to solve the 
tridiagonal system of the method.  Convergence of the method is discussed and maximum absolute errors for 
the standard examples in comparison to the existing methods in the literature are presented to show the 
efficiency of the method. 
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1 Introduction 

We consider a second order singularly perturbed 
boundary value problem of the form:  

              ( ) ( ) ( ) ( )y x p x y x q xε ′′ = +                   
with boundary conditions 

            1 2 (0) ,    (1)y yγ γ= =  
where 1γ , 2γ  are given constants, ε  is a small 
positive parameter such that 0 1ε< <<  and p(x), f(x) 
are small bounded real functions.  It is known that 
the above problem exhibits boundary layers at both 
ends of the interval depends upon the properties of 
p(x).  These problems arise in many areas of 
engineering and applied mathematics.  Examples of 
these are heat transport problem with Peclet 
numbers and Navier Stokes flows with large 
Reynold number.  Because of the presence of 
boundary layers, difficulties are experienced in 
solving these types of problems using numerical 
methods with uniform mesh.  In order to get a good 
approximation, a fine mesh is required in the 
boundary layer region.  A wide variety of splines are 
described in  [1 2].  The application of spline for the 
numerical solution of singularly perturbed boundary 
value problems has been described in many papers 
[3,4,5,6,7,8,9,10,11,12].   
    In this present paper, we have derived a variable 
mesh finite difference scheme using non polynomial 
spline for the solution of above problem.  The main 
idea is to use the condition of continuity of the first 

order derivatives of the variable mesh non 
polynomial spline at the interior nodes as a 
discretization equation for the problem.  
     The paper is organized as follows: In section 
2, the non polynomial spline for variable mesh 
is defined. In section 3, description of the 
numerical scheme is given. In section 4, 
convergence analysis of the proposed method is 
projected. Numerical illustrations are presented 
in section 5. Finally, conclusion is given in the 
last section. 
  
2 Non Polynomial Spline for variable 
mesh                
     Let 0 1 10 .... 1n nx x x x−= < < < < =  be a sub 
division of an interval [0,1] with variable step size 

1i i ih x x −= −  for i = 1 to n  and  1i ih hσ+ = .   Let y(x) 
be the exact solution and iy  be an approximation to 

( )iy x  obtained by the non polynomial cubic spline 
( )iS x  passing through the points ( , )i ix y  and 

1 1( , )i ix y+ + .  We not only require that ( )iS x  satisfies 
interpolatory conditions at ix  and 1ix + , but also the 
continuity of first derivative at the common nodes 
( , )i ix y are fulfilled. 

We write ( )iS x  in the form 
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( ) ( ) sin ( )

            cos ( ),   0,1,..., 1.
i i i i i i

i i

S x a b x x c x x
d x x i n

τ
τ

= + − + −

+ − = −
    (1)  

where , ,i i ia b c  and id  are constants and τ  is a free 
parameter. 

    A non-polynomial function S(x) of class 
[ ]2 ,  C a b  interpolates y(x) at the grid points ix  for     

i = 0,1,...,N depends on a parameter τ  and reduces 
to ordinary cubic spline S(x) in [a, b] as 0.τ →  

    To derive an expression for the coefficients of Eq. 
(1) in term of iy , 1iy + , iM  and 1iM + , we first define  

                   .)(,)(

,)(,)(

11
''''

11

++

++

==

==

iiii

iiiiii

MxSMxS
yxSyxS

                  
From algebraic manipulation, we get the following 
expression for the unknowns:  

    

1 1
2

1
2 2

,  ,

cos ,  
sin

i i i i i
i i i

i i i
i i

M y y M Ma y b
h

M M Mc d

τθτ
θ

τ θ τ

+ +

+

− −
= + = +

−
= = −

  (2) 

where 1 ihθ τ += , for i = 0,1,2,...,n-1. 

    Using the continuity of the first derivative at 
( , )i ix y , i.e. 1( ) ( )i i i iS x S x−′ ′= , we obtain the 
following relation for i =1,2,.......,n-1. 

    
[ ]

1 1
2

1 1 1 2 1

(1 )  

                
i i i

i i i i

y y y

h M M M

σ σ

α β α
− +

+ − +

− + + +

= + +
  (3) 

where 

1 2 2 2

2 12

cos
1 cos,     ,    

sinsin sin

1 1  and  ,     
sin i ih h

θ
σ σ σ θσα β

θ θ θ θθ θ θθ θ
σ σ

α θ τ τ σ
θ θθ +

 
 −  = + = + − −

   
   
   

−
= + = =

 
The local truncation error ( )i iT h  associated with our 
scheme (3) is 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

22 2
1 2

32 2 3
1 2

2
43 2 4

1 2

2
54 3 5 6

1 2

( ) 1
2

1
6

1
24 2

1 0
120 6

i i i i

i i

i i

i i

T h y h

y h

y h

y h h

σ σ σ α β α

σ σ σ α σα

σ σσ α σ α

σ σσ α σ α

 = − + + + +  
 + − − + − −  
 

+ − + + + 
 
 

+ − − + − − + 
 

 

for the choice of 

2 2

1 2 2

3 2

2

1 1,   ,  
12 12

4 4 1
12

σ σ σ σα α
σ σ

σ σ σβ
σ

+ − + −
= =

+ + +
=

. 

The above scheme (3) indicates third order 
convergent and the truncation error will be 

( )( )( ) ( ) ( )52 5 61( ) 1 2 2 1
360i i i iT h y h O hσ σ σ σ = − + + + 

 

 
 
3 Numerical Method 

    We consider a second order singularly perturbed 
boundary value problem: 

                 ( ) ( ) ( ) ( )y x p x y x q xε ′′ = +                (4) 

                       0 1(0) ,    (1)y yγ γ= =  

where 0 1ε< << , p(x), q(x) are bounded continuous 
functions in (0, 1) and 1γ , 2γ  are finite constants.   
Substituting j jM y′′=  in Eq. (4), we have  
 
     ( ) ( ) ( ) for   1, , i 1j j j jM p x y x q x j i iε = + = − +  

 
Substituting the above equations in Eq. (3), we get 
the following tridiagonal finite difference 
scheme: 

( ) ( )( )
( ) ( )

2 2
1 1 1 i-1 1 i

2 2
2 1 1 i 1 i 1 1 1 2 1

i 1

   1    

    =  -     

where   

i i i i

i i i i i

i

h p y h p y

h p y h q q q

h h

εσ α ε σ β

ε α α β α

σ

+ − +

+ + + + − +

+

− + + + +

+ − + + +

=
           (5) 

We solve the tridiagonal system (5) by using the 
discrete invariant imbedding algorithm. 
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Remark: For 1ε = (regular problem) 
1σ = (uniform mesh) we get 

                    

( )

2 2

1 i-1 i

2 2

1 i 1 1 1

101  2  
12 12

1  10 
12 12

i i

i i i i

h hp y p y

h hp y q q q

−

+ + − +

   
− + + +   
   
 

+ − + = + + 
 

  

This is well known fourth order Numerov method 
for the regular problem    
 
           ( ) ( ) ( ) ( )y x p x y x q x′′ = +  
 
 
4 Convergence analysis 

Writing the tridiagonal system of Eq. (5) in matrix-
vector form, we get    

                            AY C=     (6) 

in which ( ) ,  1 , -1i jA m i j N= ≤ ≤ is a tridiagonal 
matrix of order N-1 , with 

      ( )

2
  1 2 1 1

2
 1

2
  -1 1 1 1

   ,     1,2,..., - 2

1    ,     1,2,..., -1

   ,   2,3,..., -1

i i i i

i i i i

i i i i

m h p i N

m h p i N

m h p i N

ε α

ε σ β

εσ α

+ + +

+

+ −

= − + =

= + + =

= − + =

  

and ( )  ; 1 -1iC d i N= ≤ ≤  is a column vector with   

( )2
i 1 1 1 2 1   i i i id h q q qα β α+ − += − + + and 

( )1 2 1, ,..., .t
NY y y y −=                                                

We also have         
__

( )AY T h C− =                          (7) 
__ __ __ __

1 2 1where , ,...,
t

NY y y y −
 

=  
 

is the actual solution and 

( ) ( )1 1 2 2 1 1( ), ( ),.... ( ) t
N NT h T h T h T h− −=  is the local 

truncation error with i ( )iT h given by  

( )( )( ) ( ) ( )52 5 6
i ( ) 1 2 2 1  ( ) 0  

360i i i i i i iT h h y x hε σ σ σ σ= − + + +

                                                     (8) 
From Eq. (6) and Eq. (7), we get 

                       
__

 ( )A Y Y T h 
− = 

 
   (9) 

Thus the error equation is  

                              AE = T(h)                               (10) 

where   ( )
__

1 2 1, ,..., t
NE Y Y e e e −= − = . 

Clearly, we have 

( )
1

2
1 1 j 2 1 2 2

1

  
N

j

S m h p pεσ β α
−

=

= = + +∑  

( )
1

2
 j 1 1 i-1 i 3 i 1

1

   
N

i i i
j

S m h p p pα β α
−

+ +
=

= = + +∑
2
i i                      ,  2 ,3,..., 2h B i N= = −

( )2
i 1 i-1 i 2 i 1where         B p p pσ α β α += + +    

( )
1

2
1 1 j 1 N-2 N-1

1

  
N

N N N
j

S m h p pε α β
−

− −
=

= = + +∑  

Since 0σ > , it can be seen that  
2 2

1 2,  are positive if  1 - 0 ,  1 0α α σ σ σ σ+ > + − >  

1 5which  implies          1.618
2 2
5 1           and               0.618

2 2
Thus,  we obtain         0.618 1.618. 

σ

σ

σ

< + ≅

> − ≅

< <

 

We can choose h sufficiently small so that the 
matrix A is irreducible and monotone. It follows that 

1A−  exists and its elements are non negative. 
Hence from Eq. (10) we get,  

                            1 ( )E A T h−=                          (11) 
Also from the theory of matrices we have 

              
1 __

, i
1

   1  ,   1,2,..., -1  
N

k i
i

m S k N
−

=

= =∑         (12) 

( )
__

-1
,where   is  ,  element of the matrix  .k im k i A  

Therefore, 
 

         
-1 _

, 2 2
1

1   1

1 1 1 
min

o o

N

k i
ii i i i i

i N

m
S h B h B=

≤ ≤ −

≤ = ≤∑             (13) 

 
for some 0i  between 1 and N-1.                                                           
 
From Eq. (8), Eq. (11) and Eq. (12), we get         

          
1

. i
1

   ( ),    1,2..., -1
N

j k i
i

e m T h j N
−

=

= =∑
  
         (14) 

which implies    
0

3

  ,    1,2..., -1j
i

Phe j N
B

≤ =  

where P is a constant independent of h. 
 
Therefore,      ( )3

i iE O h=  
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i.e., the method reduces to a third order convergent 
for non uniform mesh. In addition, if 1=σ  
(uniform mesh) gives ( )6( )i iT h O h= . 

Therefore, from Eq. (14) we have  

                      ( )4
i  where  max iE O h h h= =  

i.e., our method reduces to a fourth order convergent 
for uniform mesh.     

5  Numerical illustration 

    In order to test the viability of the proposed 
method, we applied it to two singular perturbation 
problems having a thin boundary layer of ( )O ε  

with two boundary layers.  These examples have 
been chosen as they are widely discussed in 
literature and exact solutions are also available for 
comparison. We present maximum absolute errors 
with comparison and graphical solution to show the 
efficiency of the method.   

Example 1. Consider the non-homogeneous singular 
perturbation problem   

2 2( ) ( ) cos 2 cos2y x y x x xε π επ π′′ − = + ;  x∈[0,1] 
with y(0) = 0 and y(1) = 0.   
The exact solution is given by   

( )( ) ( )

( )

1 / /

2
1/

( ) cos
1

x xe e
y x x

e

ε ε

ε
π

− − −

−

 + 
 = −

+
 

The maximum absolute errors are presented in 
Table 1 for N = 16, 32, 64, 128, 256 with 

4 5 6 72 ,2 ,2 ,2ε − − − −= . 
Example 2. Consider the non-homogeneous singular 
perturbation problem   

( ) ( )( )21 40 1 2y x y x xε ε′′− + + = − − −                  

with y(0) = 0 and y(1) = 0.    
The exact solution is given by  ( )( ) 40 1y x x x= −  
The maximum absolute errors with comparison are 
presented in Table 2 for different values of N = 16, 
32  with 3 90.1 10 ,...,0.1 10ε − −= × × . 

6  Conclusion           

 We have proposed a variable mesh non polynomial 
spline method for the solution of singular 
perturbation problems exhibiting twin layers. We 

have implemented the present method on standard 
test problems because they have been widely 
discussed in literature and exact solutions are also 
available for comparison. We have presented 
maximum absolute errors and compared the results 
with the existing methods to support the method. 
We have also presented graphical solution to the 
problems. The convergence analysis of the proposed 
method has been discussed.  It is observed from the 
results that the present method approximate the 
exact solution very well for smaller value of ε  also.    

 Table 1.  Maximum absolute errors with 
comparison for Example 1 
__________________________________________ 
ε / N    42           52    62    72        82     
__________________________________________ 
Present method 

42−  4.07(-5)   2.53(-6)  1.58(-7)  9.87(-9)  6.17(-10) 
52−  2.00(-5)  1.24(-6)  7.74(-8)   4.83(-9)  3.02(-10)  
62−  5.45(-5)  3.42(-6)  2.14(-7)  1.34(-8)   8.39(-10) 
72−  1.83(-4) 1.22(-5)  7.68(-7)   4.81(-8)   3.01(-9) 

Surla and Stojanovic’s method [11] 
42−  8.06(-3)  2.02(-3)  5.08(-4)   1.27(-4)   3.17(-5) 
52−  7.11(-3)  1.79(-3)  4.48(-4)   1.12(-4)   2.80(-5) 
62−  6.58(-3)  1.66(-3)  4.15(-4)   1.04(-4)   2.60(-5) 
72−  6.36(-3)  1.61(-3)  4.03(-4)   1.01(-4)   2.52(-5) 

 
Surla and Herceg and cvekovic’s method [10] 

42−  4.14(-3)  1.02(-3)   2.54(-4)   6.35(-5)  1.58(-5) 
52−  3.68(-3)  9.03(-4)   5.61(-5)   1.40(-5)   3.50(-6) 
62−  3.45(-3)  8.40(-4)   2.08(-4)   5.20(-5)   1.30(-5) 
72−  3.43(-3)  8.21(-4)  2.03(-4)   5.06(-5)   1.26(-5) 

 
Surla and Vukoslavcevic’s method [12] 

42− 1.20(-4)  7.47(-6)   4.67(-7)    2.90(-8)   4.39(-9) 
52− 1.28(-4)  8.00(-6)  5.00(-7)    3.14(-8)   1.99(-9) 
62− 1.60(-4)  1.00(-5)  6.26(-7)    3.92(-8)   2.31(-9) 
72− 2.34(-4)  1.47(-5)  9.23(-7)    5.77(-8)   3.72(-9) 

 
Kadalbajoo and Bawa’s method [4] 

42−  7.09(-3)   1.77(-3)  4.45(-4)   1.11(-4)  2.78(-5) 
52−  5.68(-3)   1.42(-3)  3.55(-4)    8.89(-5)  2.22(-5) 
62−  4.07(-3)   1.01(-3)  2.54(-4)    6.35(-5)  1.58(-5) 
72−  6.97(-3)  1.75(-3)  4.33(-4)   1.08(-4)  2.71(-5) 

__________________________________________ 
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Table 2.  Maximum absolute errors for Example 2 
__________________________________________ 
           Method     Method     Method     Present   
             in [10]       in [11]     in [12]        method 
_________________________________________ 
 ε                              N = 16 
 
0.1(-3)   2.5(-2)      2.6(-2)       6.5(-5)       3.55(-15) 
0.1(-4)    2.1(-2)      2.4(-2)       3.6(-5)       1.77(-15) 
0.1(-5)    7.0(-3)      1.7(-2)       3.3(-5)        1.77(-15) 
0.1(-6)    7.5(-4)      6.9(-3)       2.6(-5)       3.55(-15) 
0.1(-7)    7.4(-5)      2.3(-3)       2.0(-5)        3.55(-15) 
0.1(-8)    6.7(-5)      7.6(-4)       2.0(-5)        1.77(-15) 
0.1(-9)      0.0        2.4(-4)     1.1(-5)       3.55(-15) 
                                  

N = 32 
 
0.1(-3)    6.4(-3)    6.5(-3)       5.9(-5)      4.66(-15) 
0.1(-4)    6.1(-3)    6.4(-3)       2.1(-5)       3.55(-15) 
0.1(-5)    4.1(-3)    5.6(-3)       3.5(-5)      3.55(-15) 
0.1(-6)    7.7(-4)    3.1(-3)       3.9(-5)      3.55(-15) 
0.1(-7)    7.6(-5)    1.2(-3)       2.1(-5)      3.55(-15) 
0.1(-8)    6.7(-6)    3.8(-4)       2.1(-5)     3.55(-15) 
0.1(-9)      0.0       1.3(-4)        1.4(-5)     3.55(-15) 
_________________________________________ 
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Fig 1.  Numerical solution and exact solution of 

Example 1 with N = 62 , 72ε −= . 
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Fig 2.  Numerical solution and exact solution of         

       Example 3 with N = 52 , 30.1 10ε −= ×  
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